Supplementary Document: Real-time Rendering of Layered Materials with Anisotropic Normal Distributions

Tomoya Yamaguchi Waseda University tomoya.tomoya@akane.waseda.jp

Yusuke Tokuyoshi SQUARE ENIX CO., LTD. (now at Intel Corporation) yusuke.tokuyoshi@gmail.com

A ADDITIONAL FORMULAS

A.1 Derivation of Jacobian Matrices

To derive Jacobian matrices, we partly followed the derivation by Stam [2001]. Different from his derivation, we derived an approximate solution for the Jacobian matrices over the region near to the origin of \mathcal{P} , while Stam derived the exact solution only at the origin. Without loss of generality, we can assume incident direction ω_i as $(\theta_i, 0)$. Let ω_r and ω_t be directions for reflection and refraction, respectively. We denote the directions ω_i , ω_r , ω_t , and \mathbf{h} as follows:

$$\omega_i = (\sin \theta_i, 0, \cos \theta_i),$$

$$\omega_r = (x_r, y_r, z_r),$$

$$\omega_t = (x_t, y_t, z_t),$$

$$h = (x_h, y_h, z_h).$$

Let η be a relative refractive index between two interfaces, we can write ω_r and ω_t as follows:

$$\begin{split} & \omega_r = 2(\omega_i \cdot \mathbf{h})\mathbf{h} - \omega_i, \\ & \eta \omega_t = \left(\omega_i \cdot \mathbf{h} - \sqrt{(\omega_i \cdot \mathbf{h})^2 + \eta^2 - 1}\right)\mathbf{h} - \omega_i. \end{split}$$

Using these equations, we can obtain the projected 2D coordinates (x_r, y_r) and (x_t, y_t) of ω_r and ω_t :

$$\begin{cases} x_r = 2Ax_h - \sin \theta_i \\ y_r = 2Ay_h \end{cases}$$

$$\begin{cases} \eta x_t = \left(A - \sqrt{A^2 + \eta^2 - 1}\right) x_h - \sin \theta_i \\ \eta y_t = \left(A - \sqrt{A^2 + \eta^2 - 1}\right) y_h \end{cases}$$
where $A = x_h \sin \theta_i + \cos \theta_i \sqrt{1 - x_h^2 - y_h^2}$

Therefore, for reflection, the Jacobian matrix is obtained as in the main body of the paper. For refraction, the Jacobian matrix is calculated as follows:

$$\mathbf{J}_t = \begin{bmatrix} \frac{\partial x_t}{\partial x_h} & \frac{\partial x_t}{\partial y_h} \\ \frac{\partial y_t}{\partial x_h} & \frac{\partial y_t}{\partial y_h} \end{bmatrix},$$

Tatsuya Yatagawa The University of Tokyo tatsy@den.t.u-tokyo.ac.jp

Shigeo Morishima Waseda University shigeo@waseda.jp

$$\begin{split} \eta \frac{\partial x_t}{\partial x_h} &= A - \sqrt{A^2 + \eta^2 - 1} + x_h \frac{\partial A}{\partial x_h} \left(1 - \frac{2A}{\sqrt{A^2 + \eta^2 - 1}} \right) \\ \eta \frac{\partial x_t}{\partial y_h} &= x_h \frac{\partial A}{\partial y_h} \left(1 - \frac{2A}{\sqrt{A^2 + \eta^2 - 1}} \right) \\ \eta \frac{\partial y_t}{\partial x_h} &= y_h \frac{\partial A}{\partial x_h} \left(1 - \frac{2A}{\sqrt{A^2 + \eta^2 - 1}} \right) \\ \eta \frac{\partial y_t}{\partial y_h} &= A - \sqrt{A^2 + \eta^2 - 1} + y_h \frac{\partial A}{\partial y_h} \left(1 - \frac{2A}{\sqrt{A^2 + \eta^2 - 1}} \right) \\ \text{where} \begin{cases} \frac{\partial A}{\partial x_h} &= \sin \theta_i - \frac{x_h \cos \theta_i}{\sqrt{1 - x_h^2 - y_h^2}}, \\ \frac{\partial A}{\partial y_h} &= - \frac{y_h \cos \theta_i}{\sqrt{1 - x_h^2 - y_h^2}}, \end{cases} \end{split}$$

As we wrote in the main body of the paper, we assume x_h , y_h , and θ_i are small enough that we can ignore the second- and higher-order terms of x_h , y_h , and $\sin \theta_i$. Then, we can approximate J_t as follows:

$$\begin{aligned} \mathbf{J}_{t} &\approx \frac{1}{\eta} \begin{bmatrix} \cos \theta_{i} - \sqrt{\cos^{2} \theta_{i} + \eta^{2} - 1} & 0 \\ 0 & \cos \theta_{i} - \sqrt{\cos^{2} \theta_{i} + \eta^{2} - 1} \end{bmatrix} \\ &= \frac{1}{\eta} \begin{bmatrix} \cos \theta_{i} - \cos \theta_{t} & 0 \\ 0 & \cos \theta_{i} - \cos \theta_{t} \end{bmatrix} \end{aligned}$$

Thus, the Jacobian matrix for refraction is also diagonal and its diagonal entries are the same.

A.2 Adding-Doubling for Two-layer Materials

For two-layer materials, Belcour [2018] provided the result of the adding-doubling method in Section 5 of his paper. To extend their formulas using our result for anisotropic distribution is easy. By replacing the scalar variances $\sigma_{ij}^{\{T,R\}}$ with covariance matrices $\Sigma_{ij}^{\{T,R\}}$. The series of interactions that are possible in two-layer materials are only R and TR^+T . The atomic operators for R are given by

$$e^{R} = r_{12},$$

$$\mu^{R} = -\mu_{i},$$

$$\Sigma^{R} = r_{12}\Sigma_{12}^{R}$$

Yamaguchi et al.

For TR^+T , the atomic operators are obtained as follows:

$$e^{TR^+T} = \frac{t_{12}r_{23}t_{12}}{1 - r_{23}r_{12}},$$

$$\mu^{TR^+T} = -\mu_i,$$

$$\boxed{\Sigma^{TR^+T} = \frac{t_{12}r_{23}t_{12}}{1 - r_{23}r_{12}} \left[\Sigma_{12}^T + \Sigma_{21}^T + K_{21} \left(\Sigma_{23}^R + \frac{r_{23}r_{21}}{1 - r_{23}r_{21}} \Sigma_{21}^R \right) \right]}$$

In these formulas, r_{jk} and t_{jk} denote reflection and transmission coefficients between j-th and k-th interfaces, and K_{jk} is a transmission scaling factor which scales the roughness parameters. As explained in the main body of the paper, $\Sigma_{12}^{\{R,T\}}$ can be obtained as follows:

$$\begin{split} \boldsymbol{\Sigma}_{12}^{\{R,T\}} &= \begin{bmatrix} \mathbf{t}_x & \mathbf{t}_y \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \sigma_{12,x}^{\{R,T\}} & \mathbf{0} \\ \mathbf{0} & \sigma_{12,y}^{\{R,T\}} \end{bmatrix} \begin{bmatrix} \mathbf{t}_x & \mathbf{t}_y \end{bmatrix}, \\ \boldsymbol{\sigma}_{12,\{x,y\}}^R &= h \left(\boldsymbol{\alpha}_{\{x,y\}} \right), \quad \boldsymbol{\sigma}_{12,\{x,y\}}^T &= h \left(\boldsymbol{s} \times \boldsymbol{\alpha}_{\{x,y\}} \right). \end{split}$$

REFERENCES

- L. Belcour. 2018. Efficient rendering of layered materials using an atomic decomposition with statistical operators. ACM Trans. Graph. 37, 4, Article 73 (2018), 15 pages. https://doi.org/10.1145/3197517.3201289
- J. Stam. 2001. An illumination model for a skin layer bounded by rough surfaces. In Eurographics Workshop on Rendering. 39–52. https://doi.org/10.2312/EGWR/EGWR01/039-052

(Appendix B starts from the next page)

B ADDITIONAL RESULTS

B.1 Results for varying roughness parameters

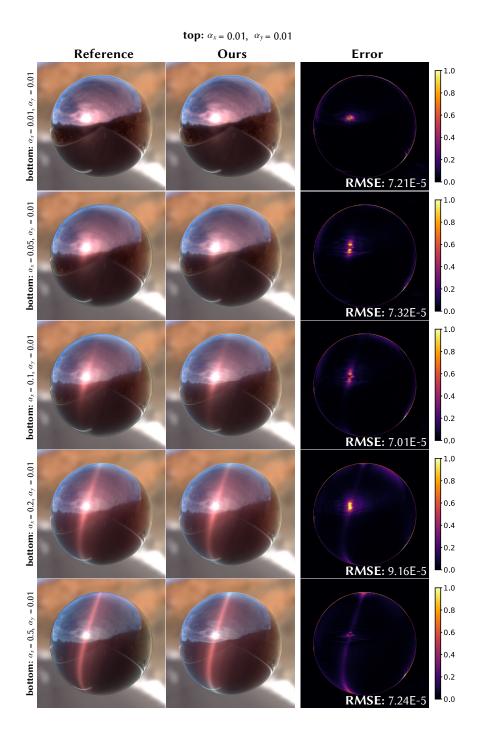


Figure 1: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness parameters of the top layer are fixed at $(\alpha_x, \alpha_y) = (0.01, 0.01)$

yamaguchi et al.

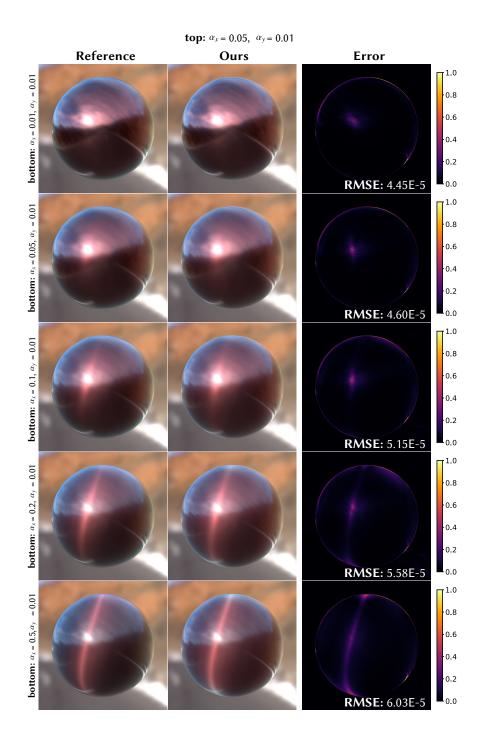


Figure 2: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness parameters of the top layer are fixed at $(\alpha_x, \alpha_y) = (0.05, 0.01)$

B.2 Results for varying rotation of local coordinate system

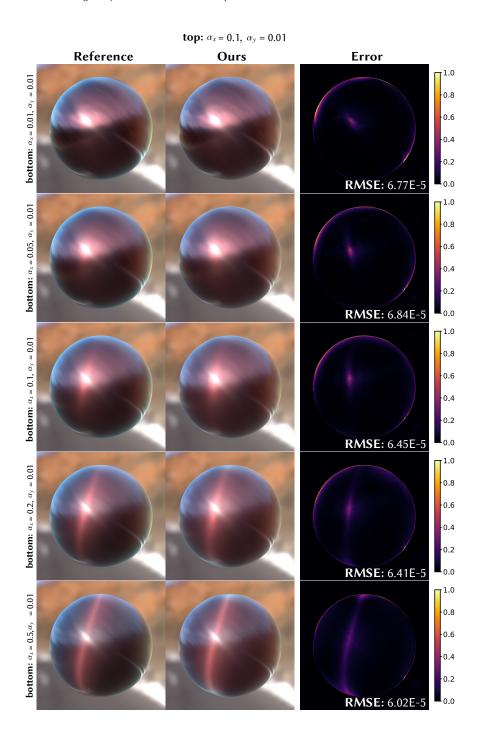


Figure 3: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness parameters of the top layer are fixed at $(\alpha_x, \alpha_y) = (0.1, 0.01)$

yamaguchi et al.

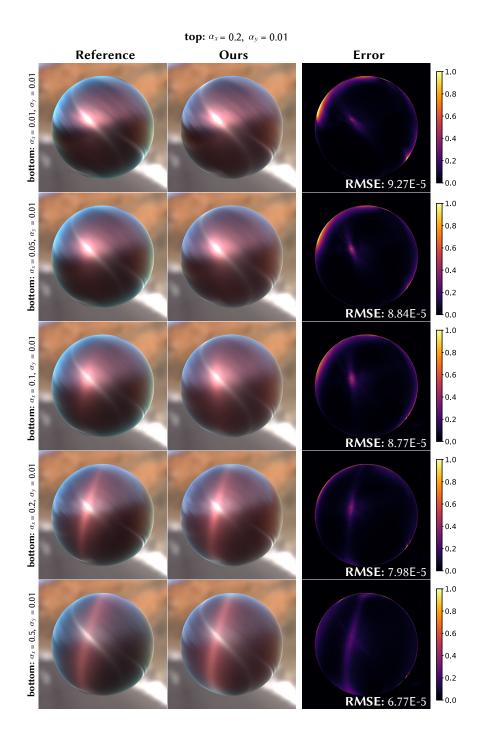


Figure 4: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness parameters of the top layer are fixed at $(\alpha_x, \alpha_y) = (0.2, 0.01)$

.

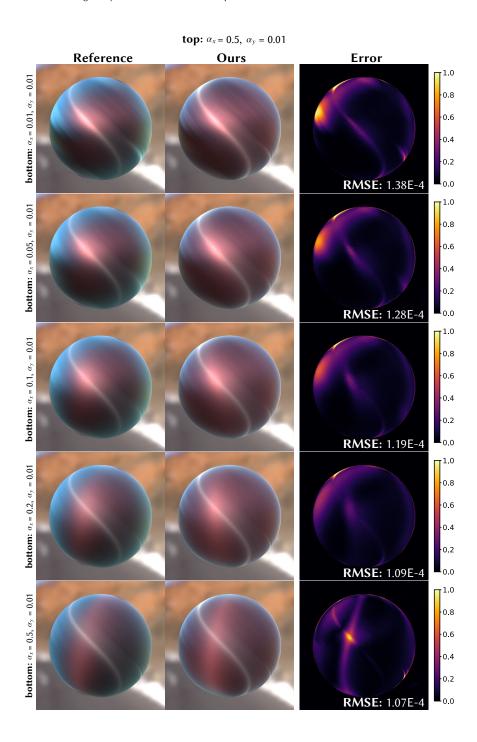


Figure 5: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness parameters of the top layer are fixed at $(\alpha_x, \alpha_y) = (0.5, 0.01)$

,,, Yamaguchi et al.

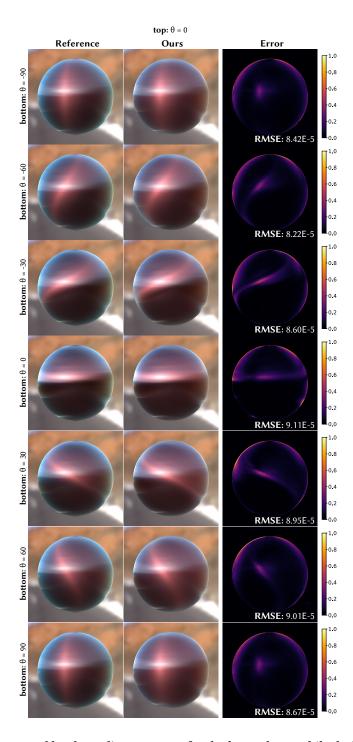


Figure 6: Rendering results for rotated local coordinate systems for the *bottom* layer, while the local coordinate system of the top layer is fixed.

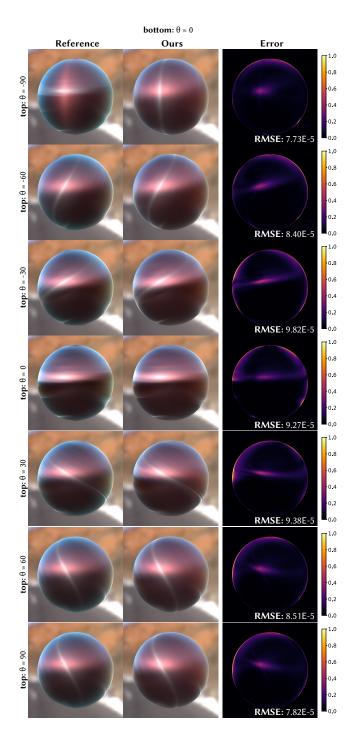


Figure 7: Rendering results for rotated local coordinate systems for the *top* layer, while the local coordinate system of the bottom layer is fixed.