Supplementary Document: Real-time Rendering of Layered Materials with Anisotropic Normal Distributions

Tomoya Yamaguchi
Waseda University

tomoya.tomoya@akane.waseda.jp

Yusuke Tokuyoshi

SQUARE ENIX CO., LTD. (now at Intel Corporation)
yusuke.tokuyoshi@gmail.com

A ADDITIONAL FORMULAS

A. 1 Derivation of Jacobian Matrices

To derive Jacobian matrices, we partly followed the derivation by Stam [2001]. Different from his derivation, we derived an approximate solution for the Jacobian matrices over the region near to the origin of \mathcal{P}, while Stam derived the exact solution only at the origin. Without loss of generality, we can assume incident direction ω_{i} as $\left(\theta_{i}, 0\right)$. Let ω_{r} and ω_{t} be directions for reflection and refraction, respectively. We denote the directions $\omega_{i}, \omega_{r}, \omega_{t}$, and \mathbf{h} as follows:

$$
\begin{aligned}
\omega_{i} & =\left(\sin \theta_{i}, 0, \cos \theta_{i}\right), \\
\omega_{r} & =\left(x_{r}, y_{r}, z_{r}\right), \\
\omega_{t} & =\left(x_{t}, y_{t}, z_{t}\right), \\
\mathbf{h} & =\left(x_{h}, y_{h}, z_{h}\right) .
\end{aligned}
$$

Let η be a relative refractive index between two interfaces, we can write ω_{r} and ω_{t} as follows:

$$
\begin{aligned}
\omega_{r} & =2\left(\omega_{i} \cdot \mathbf{h}\right) \mathbf{h}-\omega_{i} \\
\eta \omega_{t} & =\left(\omega_{i} \cdot \mathbf{h}-\sqrt{\left(\omega_{i} \cdot \mathbf{h}\right)^{2}+\eta^{2}-1}\right) \mathbf{h}-\omega_{i}
\end{aligned}
$$

Using these equations, we can obtain the projected 2D coordinates $\left(x_{r}, y_{r}\right)$ and $\left(x_{t}, y_{t}\right)$ of ω_{r} and ω_{t} :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{r}=2 A x_{h}-\sin \theta_{i} \\
y_{r}=2 A y_{h}
\end{array}\right. \\
& \left\{\begin{array}{l}
\eta x_{t}=\left(A-\sqrt{A^{2}+\eta^{2}-1}\right) x_{h}-\sin \theta_{i} \\
\eta y_{t}=\left(A-\sqrt{A^{2}+\eta^{2}-1}\right) \\
y_{h}
\end{array}\right. \\
& \text { where } A=x_{h} \sin \theta_{i}+\cos \theta_{i} \sqrt{1-x_{h}^{2}-y_{h}^{2}} .
\end{aligned}
$$

Therefore, for reflection, the Jacobian matrix is obtained as in the main body of the paper. For refraction, the Jacobian matrix is calculated as follows:

$$
\mathbf{J}_{t}=\left[\begin{array}{ll}
\frac{\partial x_{t}}{\partial x_{h}} & \frac{\partial x_{t}}{\partial y_{h}} \\
\frac{\partial y_{t}}{\partial x_{h}} & \frac{\partial y_{t}}{\partial y_{h}}
\end{array}\right],
$$

Tatsuya Yatagawa
The University of Tokyo tatsy@den.t.u-tokyo.ac.jp
Shigeo Morishima
Waseda University
shigeo@waseda.jp

$$
\begin{aligned}
& \eta \frac{\partial x_{t}}{\partial x_{h}}=A-\sqrt{A^{2}+\eta^{2}-1}+x_{h} \frac{\partial A}{\partial x_{h}}\left(1-\frac{2 A}{\sqrt{A^{2}+\eta^{2}-1}}\right) \\
& \eta \frac{\partial x_{t}}{\partial y_{h}}=x_{h} \frac{\partial A}{\partial y_{h}}\left(1-\frac{2 A}{\sqrt{A^{2}+\eta^{2}-1}}\right) \\
& \eta \frac{\partial y_{t}}{\partial x_{h}}=y_{h} \frac{\partial A}{\partial x_{h}}\left(1-\frac{2 A}{\sqrt{A^{2}+\eta^{2}-1}}\right) \\
& \eta \frac{\partial y_{t}}{\partial y_{h}}=A-\sqrt{A^{2}+\eta^{2}-1}+y_{h} \frac{\partial A}{\partial y_{h}}\left(1-\frac{2 A}{\sqrt{A^{2}+\eta^{2}-1}}\right) \\
& \text { where }\left\{\begin{array}{l}
\frac{\partial A}{\partial x_{h}}=\sin \theta_{i}-\frac{x_{h} \cos \theta_{i}}{\sqrt{1-x_{h}^{2}-y_{h}^{2}}}, \\
\frac{\partial A}{\partial y_{h}}=-\frac{y_{h} \cos \theta_{i}}{\sqrt{1-x_{h}^{2}-y_{h}^{2}}}
\end{array}\right.
\end{aligned}
$$

As we wrote in the main body of the paper, we assume x_{h}, y_{h}, and θ_{i} are small enough that we can ignore the second- and higher-order terms of x_{h}, y_{h}, and $\sin \theta_{i}$. Then, we can approximate J_{t} as follows:

$$
\begin{aligned}
\mathbf{J}_{t} & \approx \frac{1}{\eta}\left[\begin{array}{cc}
\cos \theta_{i}-\sqrt{\cos ^{2} \theta_{i}+\eta^{2}-1} & 0 \\
0 & \cos \theta_{i}-\sqrt{\cos ^{2} \theta_{i}+\eta^{2}-1}
\end{array}\right] \\
& =\frac{1}{\eta}\left[\begin{array}{cc}
\cos \theta_{i}-\cos \theta_{t} & 0 \\
0 & \cos \theta_{i}-\cos \theta_{t}
\end{array}\right]
\end{aligned}
$$

Thus, the Jacobian matrix for refraction is also diagonal and its diagonal entries are the same.

A. 2 Adding-Doubling for Two-layer Materials

For two-layer materials, Belcour [2018] provided the result of the adding-doubling method in Section 5 of his paper. To extend their formulas using our result for anisotropic distribution is easy. By replacing the scalar variances $\sigma_{i j}^{\{T, R\}}$ with covariance matrices $\Sigma_{i j}^{\{T, R\}}$. The series of interactions that are possible in two-layer materials are only R and $T R^{+} T$. The atomic operators for R are given by

$$
\begin{gathered}
e^{R}=r_{12} \\
\mu^{R}=-\mu_{i} \\
\Sigma^{R}=r_{12} \Sigma_{12}^{R} .
\end{gathered}
$$

For $T R^{+} T$, the atomic operators are obtained as follows:

$$
\begin{gathered}
e^{T R^{+} T}=\frac{t_{12} r_{23} t_{12}}{1-r_{23} r_{12}} \\
\mu^{T R^{+} T}=-\mu_{i} \\
\Sigma^{T R^{+} T}=\frac{t_{12} r_{23} t_{12}}{1-r_{23} r_{12}}\left[\Sigma_{12}^{T}+\Sigma_{21}^{T}+K_{21}\left(\Sigma_{23}^{R}+\frac{r_{23} r_{21}}{1-r_{23} r_{21}} \Sigma_{21}^{R}\right)\right] .
\end{gathered}
$$

In these formulas, $r_{j k}$ and $t_{j k}$ denote reflection and transmission coefficients between j-th and k-th interfaces, and $K_{j k}$ is a transmission scaling factor which scales the roughness parameters. As explained in the main body of the paper, $\Sigma_{12}^{\{R, T\}}$ can be obtained as follows:

$$
\begin{aligned}
\Sigma_{12}^{\{R, T\}} & =\left[\begin{array}{ll}
\mathbf{t}_{x} & \mathbf{t}_{y}
\end{array}\right]^{\top}\left[\begin{array}{cc}
\sigma_{12, x}^{\{R, T\}} & 0 \\
0 & \sigma_{12, y}^{\{R, T\}}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{t}_{x} & \mathbf{t}_{y}
\end{array}\right] \\
\sigma_{12,\{x, y\}}^{R} & =h\left(\alpha_{\{x, y\}}\right), \quad \sigma_{12,\{x, y\}}^{T}=h\left(s \times \alpha_{\{x, y\}}\right) .
\end{aligned}
$$

REFERENCES

L. Belcour. 2018. Efficient rendering of layered materials using an atomic decomposition with statistical operators. ACM Trans. Graph. 37, 4, Article 73 (2018), 15 pages. https://doi.org/10.1145/3197517.3201289
J. Stam. 2001. An illumination model for a skin layer bounded by rough surfaces. In Eurographics Workshop on Rendering. 39-52. https://doi.org/10.2312/EGWR/ EGWR01/039-052

(Appendix B starts from the next page)

B ADDITIONAL RESULTS

B. 1 Results for varying roughness parameters

Figure 1: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5 . The roughness parameters of the top layer are fixed at $\left(\alpha_{x}, \alpha_{y}\right)=(0.01,0.01)$

Figure 2: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5 . The roughness parameters of the top layer are fixed at $\left(\alpha_{x}, \alpha_{y}\right)=(0.05,0.01)$
B. 2 Results for varying rotation of local coordinate system

Figure 3: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5 . The roughness parameters of the top layer are fixed at $\left(\alpha_{x}, \alpha_{y}\right)=(0.1,0.01)$

Figure 4: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5 . The roughness parameters of the top layer are fixed at $\left(\alpha_{x}, \alpha_{y}\right)=(0.2,0.01)$

Figure 5: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5 . The roughness parameters of the top layer are fixed at $\left(\alpha_{x}, \alpha_{y}\right)=(0.5,0.01)$

Figure 6: Rendering results for rotated local coordinate systems for the bottom layer, while the local coordinate system of the top layer is fixed.

Supplementary Document: Real-time Rendering of Layered Materials with Anisotropic Normal Distributions

Figure 7: Rendering results for rotated local coordinate systems for the top layer, while the local coordinate system of the bottom layer is fixed.

