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A ADDITIONAL FORMULAS

A.1 Derivation of Jacobian Matrices

To derive Jacobian matrices, we partly followed the derivation by
Stam [2001]. Different from his derivation, we derived an approxi-
mate solution for the Jacobian matrices over the region near to the
origin of °, while Stam derived the exact solution only at the origin.
Without loss of generality, we can assume incident direction w;
as (0;,0). Let o, and w; be directions for reflection and refraction,
respectively. We denote the directions w;, ®,, ®;, and h as follows:

w; = (sin 6;, 0, cos 0;),
or = (xr,Yr, zr),
o = (xt,Yt, 2¢),

h = (xp, yn, zp).-

Let 1 be a relative refractive index between two interfaces, we can
write w, and w; as follows:

or =2(w; - h)h -,
new; = (wi-h— (wi'h)2+'72—1)h—"°i~

Using these equations, we can obtain the projected 2D coordinates
(xr,yr) and (x¢, y;) of @, and w;:

Xy = 2Axy — sin 6;
{yr = 2Ayp
nxy = (A— \/m) xp, — sin 6;
nye = (A - \/m) Yn

where A = xp, sin6; + cos 0;4/1 —xfl - yi.

Therefore, for reflection, the Jacobian matrix is obtained as in the
main body of the paper. For refraction, the Jacobian matrix is calcu-
lated as follows:
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As we wrote in the main body of the paper, we assume xy,, yp,, and 6;

are small enough that we can ignore the second- and higher-order
terms of xp, yy, and sin 0;. Then, we can approximate J; as follows:

y, ~ 1 cos§; —+Jcos? 0; +n2 -1 0
! n 0 cos0; —/cos? 0; +n2 -1
_ 1]cos 0; — cos 0; 0
- n 0 cos 6; — cos 6y

Thus, the Jacobian matrix for refraction is also diagonal and its
diagonal entries are the same.

A.2 Adding-Doubling for Two-layer Materials

For two-layer materials, Belcour [2018] provided the result of the
adding-doubling method in Section 5 of his paper. To extend their
formulas using our result for anisotropic distribution is easy. By

{T.R}

replacing the scalar variances o, i with covariance matrices

ZI{J.T’R}. The series of interactions that are possible in two-layer

materials are only R and TR*T. The atomic operators for R are
given by

eR =Tr2,

R _
=l
R R

2T = r12212 .




For TR* T, the atomic operators are obtained as follows:
JTRT _ t12r23t12
1-rar2’

TR*T _
u =W

STRT _ t12723t12
1—ro3ri2

T T R r23121 R
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In these formulas, rj; and ¢ denote reflection and transmission
coefficients between j-th and k-th interfaces, and K ik is a trans-
mission scaling factor which scales the roughness parameters. As
{R.T}
2

explained in the main body of the paper, can be obtained as

follows:
{R,T}
RT T|Oo 0
Zfz }=[tx R wry| [t ty].
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B ADDITIONAL RESULTS

B.1 Results for varying roughness parameters
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Figure 1: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness
parameters of the top layer are fixed at(ay,ay) = (0.01,0.01)
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Figure 2: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness
parameters of the top layer are fixed at (ax, ay) = (0.05,0.01)

B.2 Results for varying rotation of local coordinate system
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Figure 3: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness
parameters of the top layer are fixed at (ay, ay) = (0.1,0.01)
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Figure 4: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness

parameters of the top layer are fixed at (ay, ay) = (0.2,0.01)
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top: ax=0.5, @y = 0.01
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Figure 5: Rendering results with varying roughness parameters on the bottom layer ranging from 0.01 to 0.5. The roughness
parameters of the top layer are fixed at (ay, ay) = (0.5,0.01)
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Figure 6: Rendering results for rotated local coordinate systems for the bottom layer, while the local coordinate system of the

top layer is fixed.
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RMSE: 7.73E-5
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Figure 7: Rendering results for rotated local coordinate systems for the top layer, while the local coordinate system of the
bottom layer is fixed.
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